London Nursing Stroke Competencies

Nutrition, Hydration and Diabetes in Acute Stroke

Marion Kagka
Specialist Dietitian
marion.kagka@gstt.nhs.uk
Malnutrition

“A state in which a deficiency, excess or imbalance of energy, protein and other nutrients causes measurable adverse effects on tissue / body form, body function and clinical outcome” (Elia, 2003)

Undernutrition is defined by BAPEN (2003) as:

- a body mass index (BMI) <18.5kg/m2 and
- unintentional weight loss of 5-10% within the last three to six months
Malnutrition and Stroke

- Prevalence of malnutrition in patients admitted to hospital following a stroke ranges from 6% to 62% (Foley et al., 2009)
- Quarter of patients become more malnourished in the first weeks after a stroke (Yoo et al., 2008)
- Malnutrition is an independent predictor of poor outcomes after stroke (FOOD Trial, 2003)
- Malnutrition is an independent predictor of mortality, LOS, and hospitalization costs at 6 months post stroke (Gomes, Emery & Weekes, 2015)
Risk of Malnutrition Is an Independent Predictor of Mortality, Length of Hospital Stay, and Hospitalization Costs in Stroke Patients (Gomes, Emery & Weekes, 2015)

<table>
<thead>
<tr>
<th>Mortality rates and hazard ratios</th>
<th>n</th>
<th>Mortality rates (Chi-square test)</th>
<th>Univariate Cox Proportional Hazards Model</th>
<th>Multivariable* Cox Proportional Hazards Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of malnutrition</td>
<td>537</td>
<td>p<0.001</td>
<td>p<0.001</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Low risk</td>
<td>342</td>
<td>6%</td>
<td>Reference group</td>
<td>Reference group</td>
</tr>
<tr>
<td>Medium risk</td>
<td>39</td>
<td>26%</td>
<td>4.9</td>
<td>2.3-10.5</td>
</tr>
<tr>
<td>High risk</td>
<td>156</td>
<td>42%</td>
<td>9.3</td>
<td>5.6-15.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p adjusted for age, gender, ethnicity, type and severity of stroke (NIHSS score) + stroke risk factors: HT, diabetes, dyslipidemia, smoking, IHD, heart failure, AF, previous TIA and heavy alcohol consumption

Guy’s and St Thomas’ NHS Foundation Trust
Cumulative length of hospital stay

Median number of days in each category of risk of malnutrition (MUST)

<table>
<thead>
<tr>
<th>Risk of malnutrition</th>
<th>Cumulative number of days (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk</td>
<td>14</td>
</tr>
<tr>
<td>Medium risk</td>
<td>19</td>
</tr>
<tr>
<td>High risk</td>
<td>48</td>
</tr>
</tbody>
</table>
Hospitalisation costs

Costs of hospitalisation according to risk of malnutrition (MUST)

- Low risk
- Medium risk
- High risk

Risk of malnutrition
Dehydration

- **More than half** of stroke patients where dehydrated at some point during their admission.

- Associated with **poor outcomes and is a predictor of institutionalisation and death** (Rowat, Graham & Dennis, 2012).

- Patients with acute stroke should have their hydration assessed using multiple methods within **four hours** of arrival at hospital, and should be **reviewed regularly** and managed so that normal hydration is maintained’ (National clinical guideline for stroke, 2016).
Dehydration

• Commonly used methods:
 - monitoring of fluid intake
 - dry mouth / symptoms of thirst
 - urine colour or volume
 - blood pressure and heart rate
 - urea: creatinine ratio
 - plasma osmolality

• Risk factors for dehydration:
 - Greater age
 - Female
 - Stroke severity
 - Prescribed diuretics

No gold standard in diagnosing dehydration
Post stroke dysphagia

- Prevalence of dysphagia in stroke patients between 28 and 65%
- Dysphagia improves significantly during the early days and after two weeks 90% of patients swallow safely
- Dysphagia is associated with increased **mortality, morbidity, and institutionalization** due to increased risk of **aspiration pneumonia, malnutrition and dehydration**
Texture modified diet

- Texture modified diets are often nutritionally inadequate (Foley et al, 2006)
- May require supplementary tube feeding and/or ONS (NICE 2006)
- Wright et al. (2005)
 - 55 older inpatients (25 normal diet vs 30 modified diet)
 - 24 hour weighed intake and food charts
 - Modified diet group consumed 40% less energy and protein
 - Why? Reduced choice, more feeding difficulties, presentation, less palatable
Thickened fluids

- Patients requiring thickened fluids are less likely to meet fluid requirements (Whelan 2001, Vivanti et al 2009) and nutritional needs

- Thickened fluid intake was 455mls/day on average. Whelan (2001)

- Vivanti et al (2009) - patients got more fluid from their food than they did from thickened fluids
Identifying Malnutrition
Nutritional Screening

- All patients should be screened for malnutrition and the risk of malnutrition at the time of admission and at least weekly thereafter (National clinical guideline for stroke, 2016)

- Referred to an appropriately trained healthcare professional for detailed nutritional assessment, individualised advice and monitoring

- MUST has been validated for use in patients with stroke (Gomes, Emery & Weekes, 2015)

- Audited in the RCP Sentinel stroke national audit programme (SSNAP)

- Results reported quarterly and available for individual Trusts
Causes of Malnutrition

- Reduced dietary intake
- Increased nutritional needs
Factors impacting oral intake following stroke

<table>
<thead>
<tr>
<th>Physical</th>
<th>Psychological</th>
<th>Organisational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysphagia</td>
<td>Depression</td>
<td>Lack of feeding assistance</td>
</tr>
<tr>
<td>Drowsiness</td>
<td>Anxiety</td>
<td>Adapted cutlery</td>
</tr>
<tr>
<td>Hemiparesis</td>
<td>Bereavement</td>
<td>Inappropriate menu choices</td>
</tr>
<tr>
<td>Visual impairment</td>
<td>Mental illness</td>
<td>Unfamiliar foods</td>
</tr>
<tr>
<td>Cognitive impairment</td>
<td>Apathy</td>
<td>Cold food</td>
</tr>
<tr>
<td>Pain</td>
<td>Poor motivation</td>
<td>Timings of meals</td>
</tr>
<tr>
<td>GI symptoms</td>
<td>Loneliness</td>
<td>Interruptions to mealtimes</td>
</tr>
<tr>
<td>Co-morbidities e.g. diabetes</td>
<td>Self-esteem</td>
<td>Rushed mealtimes</td>
</tr>
<tr>
<td>Poor dentition</td>
<td>Independence</td>
<td>Ward environment</td>
</tr>
<tr>
<td>Sore or dry mouth</td>
<td>Substance abuse</td>
<td>Ward culture</td>
</tr>
<tr>
<td>Oral thrush</td>
<td></td>
<td>Staff knowledge</td>
</tr>
<tr>
<td>Changes in taste and smell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypharmacy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Guy’s and St Thomas’
NHS Foundation Trust
Increased nutritional needs

- Ischaemic stroke (Weekes and Elia, 1992)
- Haemorrhagic stroke (Piek et al., 1989)
- Fever, infection or inflammation
- Open wounds - pressure ulcers
- Malabsorption
- Increased losses
- Activity levels
Tackling the problem

1. Dietary counselling
2. Food fortification
3. Nutritional supplements
4. Enteral feeding
5. Parenteral feeding
Food fortification

Food fortification is adding high energy/protein foods to meals to increase the calorie/protein content.

Examples of food fortification on the wards:

• Add **sauc**es such as full fat mayonnaise to meals

• Grated **cheese** portions to add to mashed potato, soups and to sprinkle over main dishes

• **Butter or unsaturated spread** portions to add to vegetables and potatoes

• **Honey, jam** or **sugar** sachets to add to fruit juice, desserts and cereals
Oral Nutritional Supplements

- Oral nutritional supplements come in a range of styles, formats, types, energy and protein densities, flavours

- Improving palatability:
 - Pre thickened for dysphagic patients
 - Mix with milk or hot chocolate or coffee
 - Better tolerated chilled
 - Explore different flavours

- Significantly reduced pressure sores, increased energy intake and increased protein intake (Geeganage et al, 2012)
Tube feeding

- When to introduce
- Nasogastric feeding
- Gastrostomy feeding
- Complications
- Ethical considerations
Tube Feeding

NG
NJ

PEG/RIG
PEG-J

JEJ
Nasogastric tube feeding

- People with acute stroke who are unable to take adequate nutrition and fluids orally should be:
 - considered for tube feeding with a nasogastric tube within 24 hours of admission
 - considered for a nasal bridle tube or gastrostomy if they are unable to tolerate a nasogastric tube

- Contraindications and complications
When to check tube position?

• On initial placement
• Before feeding, flushing or giving medications (unless feed in progress)
• Following wretching, vomiting, coughing or suctioning
• If the tube appears to have moved
• After a patient has pulled at the tube
• With new, unexplained respiratory symptoms
Gastrostomy Feeding

- Gastrostomy feeding should be considered for patients who:
 - Who need but are unable to tolerate NGT
 - Unable to swallow adequate food and fluid orally at 4 weeks
 - At long term high risk of malnutrition

- Contraindications
- Complications

Diabetes and Acute Stroke

Two main types of diabetes:

type 1 diabetes – where the body's immune system attacks and destroys the cells that produce insulin

type 2 diabetes – where the body doesn't produce enough insulin, or the body's cells don't react to insulin

Treatment for diabetes: Lifestyle changes (diet, exercise, weight loss), tablets (e.g. Biguanide, Sulphonylureas, DPP-4 inhibitors), insulin (e.g. short, medium and long acting insulin)

Diabetes almost **doubles** the chances of having a stroke and is a contributing factor **in 20% of strokes** in England, Wales and Northern Ireland (Stroke Statistics, 2017)
Acute Stroke and Hyperglycaemia

- Hyperglycaemia occurs in 30–40% of patients with acute ischaemic stroke including individuals without a known history of diabetes (Luitse et al, 2012).

- Associated with poor functional outcome, possibly through aggravation of ischaemic damage by disturbing recanalisation and increasing reperfusion injury (Luitse et al, 2012).

- Nondiabetic ischaemic stroke patients with hyperglycemia have a 3-fold higher 30-day mortality rate and in diabetic patients with ischaemic stroke 2-fold higher (Capes et al, 2001).

- Target range for blood glucose in acute stroke: 5-15 mmol/L (National clinical guideline for stroke, 2016).
Diabetes in Stroke – Monitoring/ Treatment

• Close monitoring of blood glucose to detect hyper/hypo glycaemia

• Enteral tube feeding: **Random daily** capillary blood glucose initially until stable, **four hourly** if unstable or has diabetes

• In case of hypoglycaemia (CBG’s <4 mmol/L) or hyperglycaemia (CBG’s >15mmol/L) treat in accordance with inpatient Trust guidelines, inform medical team and consider referring to the diabetes specialist team if hypoglycaemia/ hyperglycaemia

• Consider diet/ enteral tube feeding, medication/ insulin and timing

(National clinical guideline for stroke, 2016, BAPEN, 2016)
Further Reading – Diabetes

Glycaemic management during the inpatient enteral feeding of stroke patients with diabetes

Joint British Diabetes Societies (JBDS) for inpatient care

December 2018
References

References

