Classification: Official

Diagnostic Imaging Dataset: Standardised ICB rates 2024/25

Version 1, 27 November 2025

OFFICIAL

Contents

1	Introduc	tion	3
2	ICB Sta	ndardised Rates	3
		thod	
		sults	
	2.2.1	X-ray	
	2.2.2	Ultrasound	
	2.2.3	CT Scans	
	2.2.4	MRI Scans	
	2.2.5	Fluoroscopy	
	2.2.6	Nuclear Medicine	
	2.2.7	PET Scan	
	2.2.8	SPECT Scan	
	2.2.9	Medical Photography	
	2.2.10	Brain MRI	
	2.2.11	Chest X-ray	
	2.2.12	Chest CT	
	2.2.13	Kidney & Bladder Ultrasound	
	2.2.14	Abdomen & Pelvis Ultrasound	18
3	Rates R	latios	19
	3.1 Me	thod	19
	3.2 Res	sults	20
	3.2.1	Sex	20
	3.2.2	Deprivation	20
	3.2.3	Age	21
4	Annex		22
	4.1 Anr	nex A - Data quality and the impact of missing data	22
	4.2 Anr	nex B - ICB Standardised Imaging Rates per 10,000, 2024/25	24
		ntact Us	
	4.3.1	Feedback	
	4.3.2	Websites	
	4.3.3	Additional Information	

1 Introduction

Imaging activity from the Diagnostic Imaging Dataset (DID) is presented by Integrated Care Board (ICB) in Tables 7 and 8 of the annual 2024/25 report¹. This Annex to the report expresses ICB activity as a rate per population, for each modality and for early diagnosis of cancer (EDOC) tests², standardised by age, sex and deprivation. It additionally shows the impact of age, sex and deprivation on the rates using Rates Ratios.

2 ICB Standardised Rates

2.1 Method

In 2024/25, the ICB of patients in the DID was derived from either their GP Practice code or, where this was missing, the Lower Super Output Area (LSOA) of their postcode. Rates per 10,000 population were calculated by dividing 2024/25 DID activity for ICBs by October 2024 (i.e. mid-year) Master Patient Index³ ICB populations. Both sources were available by age and sex, with Index of Multiple Deprivation (IMD) quintile information added based on Lower Super Output Area (LSOA⁴).

Counts of imaging activity by ICB, sex, 5-year age band, imputed IMD quintile and modality or EDOC were extracted from DID. Cases that did not have full completeness for all these fields were removed: approximately 641,000 (1.3%) cases in 2024/25, compared with 643,000 (1.3%) cases in 2023/24.

Rates were indirectly standardised by applying the national rate by modality or EDOC for each IMD/Sex/Age breakdown to the local ICB population, to obtain an expected rate for each ICB based on their demography. The extent to which the observed rate differed from the expected rate indicated the extent to which the ICB differed from the standard, national rate. A standardised rate for each ICB by modality or EDOC was calculated as:

Standardised Rate
$$_{ICB} = \left(\frac{Observed_{ICB}}{Expected_{ICB}}\right) \times National Rate$$

Indirect standardisation allows each rate to be compared with the national average but does not allow direct comparison between ICBs. Nevertheless, it can demonstrate regional patterns and indicate the extent of variation.

¹ Diagnostic Imaging Dataset Annual Statistical Release 2024/25, NHS England and NHS Improvement, 27th November 2025. Available (with tables by ICB) from https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2024-25-data/

² See above publication for definitions of each modality and further details on the collection.

³ The Master Patient Index collects demographic data from clinical systems across the NHS, minimising duplication when computing populations.

⁴ The 2024/25 DID has 2011 LSOA derived from patient postcode, which was matched to 2015 IMD quintiles.

2.2 Results

The national rates⁵ of diagnostic imaging tests in 2024/25 per 10,000 people are shown in Tables 1 & 2 below.

Table 1. National Imaging Rates per 10,000 by modality, 2024/25

	X-ray	Ultrasound	CT Scan	MRI	Fluoro- scopy	Nuclear Medicine	PET Scan	SPECT Scan	Medical Photography
Rate per 10,000 people	3,670	1,789	1,303	758	150	51	47	9	10

Table 2. National Imaging Rates per 10,000 by Early Diagnosis of Cancer⁶, 2024/25

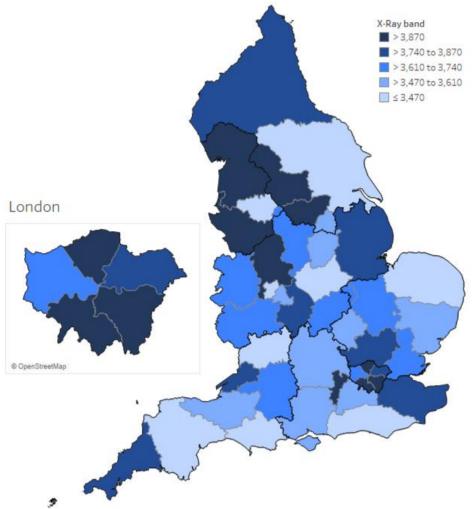
	Brain MRI	Chest X-ray	Chest CT	Kidney or Bladder Ultrasound	Abdomen or Pelvis Ultrasound
Rate per 10,000 people	162	1,316	139	36	209

Most of these rates are higher than in 2023/24.

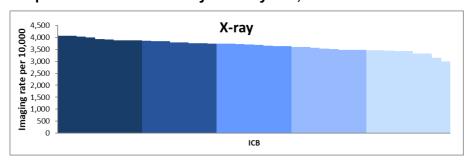
The rates for some ICBs were impacted by missing data, as outlined in Section 4.1. Rates for some ICBs, especially at the lowest end of the distribution across all modalities, may therefore have shortfalls.

For most ICBs the standardised rate was within 10% of the crude rate, but there are bigger differences particularly in areas with predominantly younger or older populations. The impact of age, sex and deprivation on imaging rates is explored in Section 3.

Standardised 2024/25 rates by ICB are available in Annex B (separate Excel file). The following sections summarise the distribution of rates for each modality or EDOC and illustrate these on a map.

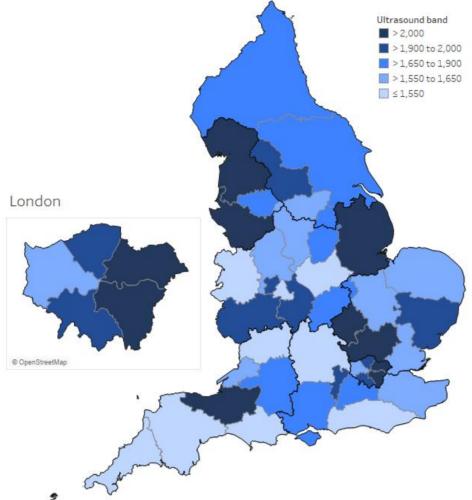

⁵ These national rates exclude activity with missing age, sex, deprivation or ICB (1.3% of overall imaging tests).

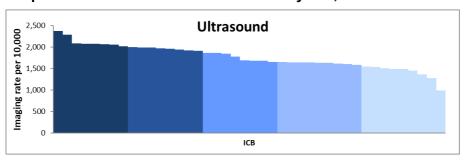
⁶ Brain MRI may be used to diagnose brain cancer; Chest X-ray and Chest CT to diagnose lung cancer, Kidney or Bladder ultrasound to diagnose kidney or bladder cancer and Abdomen and/or pelvis ultrasound to diagnose ovarian cancer (but this test, and the rates given here, are not restricted to females). Although these tests may be used to diagnose cancer, many have wider clinical uses and it is not possible to distinguish between the different uses of these tests.


2.2.1 X-ray

There was some regional variation in X-ray rates (Map 1 and Graph 1), with rates generally higher than average in ICBs in the North West and London regions. The national rate was 3,670 X-rays per 10,000 population and 76% ICBs were within one standard deviation of the mean, that is between 3,422 and 3,899 tests per 10,000 population.

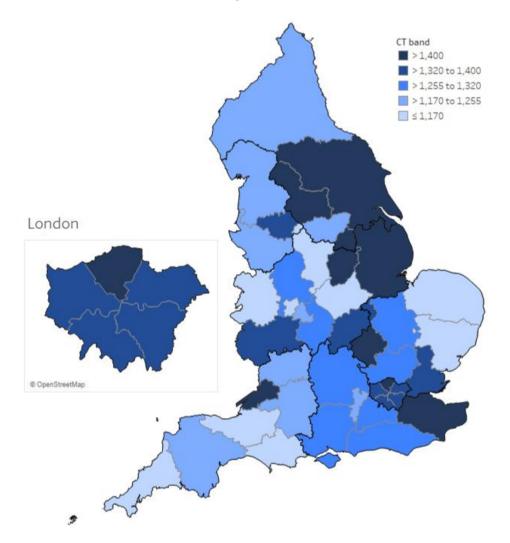
Map 1. Standardised X-ray rates by ICB, 2024/25

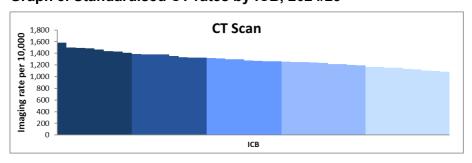

Graph 1. Standardised X-ray rates by ICB, 2024/25


2.2.2 Ultrasound

Ultrasound showed a concentration of higher rates in ICBs in the North West, London and East of England regions (Map 2). Ultrasound does not rise as steeply with age as some of the other modalities (see Section 3), so most ICBs have similar standardised and crude rates. Nevertheless, the ICB rates varied more than the other major modalities, probably because of differences in the extent to which all ultrasound activity (especially obstetric) is recorded in hospitals' radiological information systems. The national rate was 1,789 ultrasounds per 10,000 population.

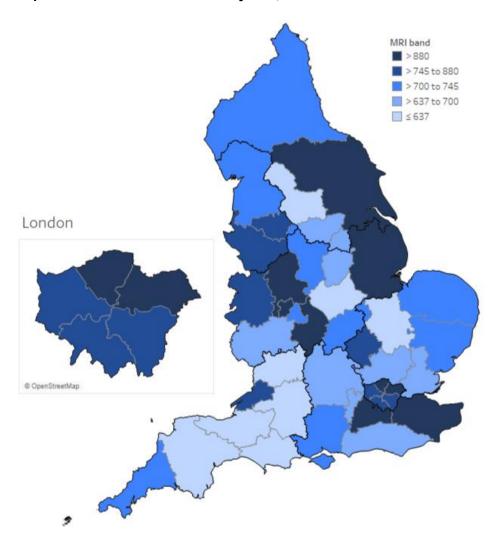
Map 2. Standardised Ultrasound rates by ICB, 2024/25

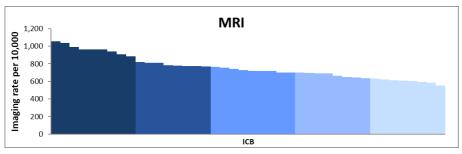

Graph 2. Standardised Ultrasound rates by ICB, 2024/25


2.2.3 CT Scans

The rate of CT scanning tended to be lower in the South West region, but there was variation in scan rate across England (Map 3), with some higher rates in the North East and Yorkshire, Midlands and South East. Demographics had a large effect on CT scan rates, with only 55% of ICBs having a standardised rate within 10% of their crude rate. The national rate was 1,303 CT scans per 10,000 population and 62% of ICBs were within one standard deviation of the mean, that is between 1,169 and 1,411 tests per 10,000 population.

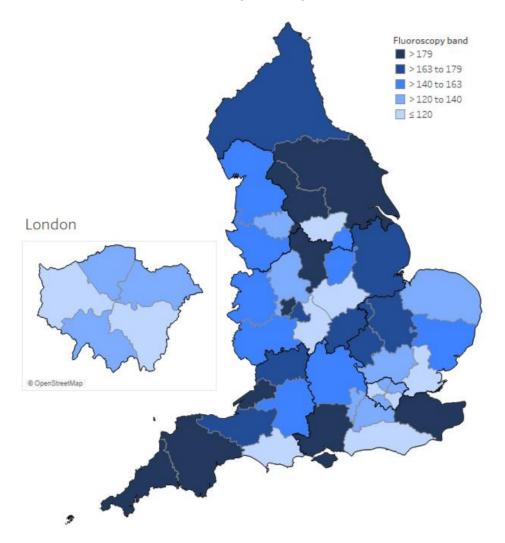
Map 3. Standardised CT rates by ICB, 2024/25

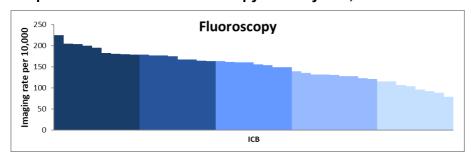

Graph 3. Standardised CT rates by ICB, 2024/25


2.2.4 MRI Scans

MRI showed some regional pattern, with lower rates observed throughout the South West region and higher rates seen across several regions, including a cluster around London and the South East (Map 4). The national rate was 758 MRI scans per 10,000 population.

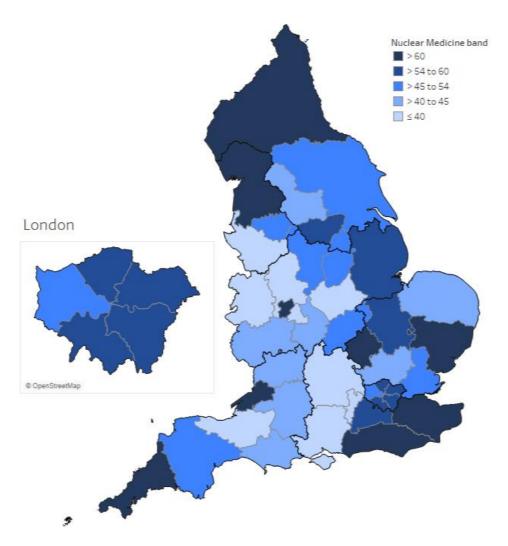
Map 4. Standardised MRI rates by ICB, 2024/25

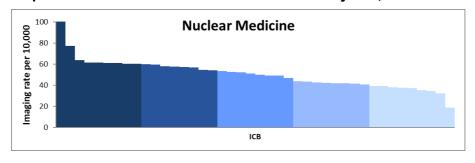

Graph 4. Standardised MRI rates by ICB, 2024/25


2.2.5 Fluoroscopy

Rates of Fluoroscopy were quite variable across England (Map 5), ranging from 78 per 10,00 population in NHS Leicester, Leicestershire and Rutland ICB to 225 in NHS Cornwall and The Isles of Scilly ICB. The national rate was 150 Fluoroscopy scans per 10,000 population.

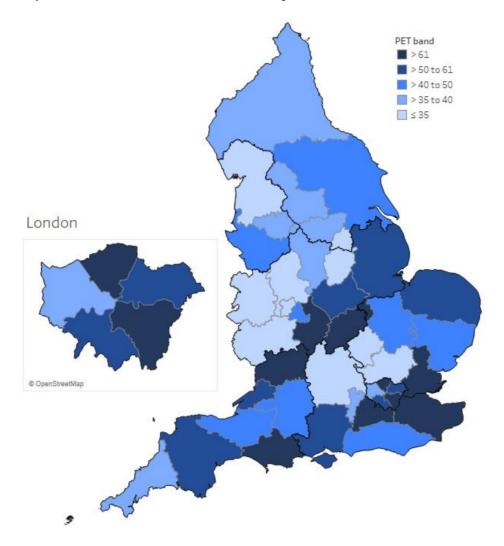
Map 5. Standardised Fluoroscopy rates by ICB, 2024/25

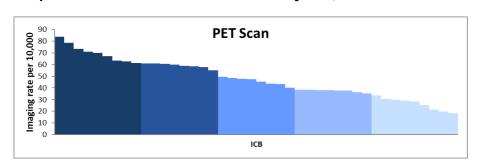

Graph 5. Standardised Fluoroscopy rates by ICB, 2024/25


2.2.6 Nuclear Medicine

Nuclear Medicine showed little consistent regional variation, with 86% of ICBs within one standard deviation of the mean rate (between 37 and 64), though a collection of ICBs with higher rates was observed in London and the South East (Map 6). The highest rate of Nuclear Medicine provision was in NHS Cornwall and the Isles of Scilly ICB, which at 102 Nuclear Medicine exams per 10,000 population was double the national rate of 51.

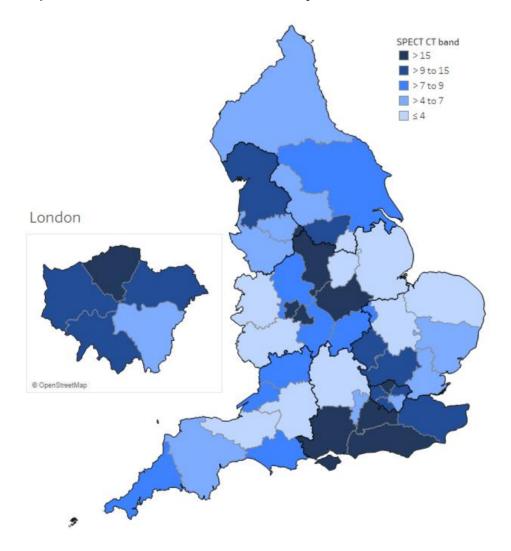
Map 6. Standardised Nuclear Medicine rates by ICB, 2024/25

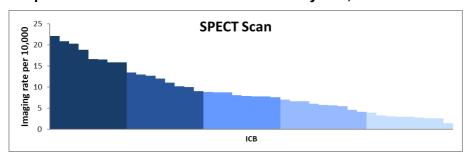

Graph 6. Standardised Nuclear Medicine rates by ICB, 2024/25


2.2.7 PET Scan

PET scan showed some regional variation, with several clusters of higher rates, including in the East of England and South East (Map 7). Some of the variability arose from the relatively small numbers: the national rate was 47 PET scans per 10,000 population and 67% of ICBs were within one standard deviation of the mean, between 31 and 64 tests per 10,000 population.

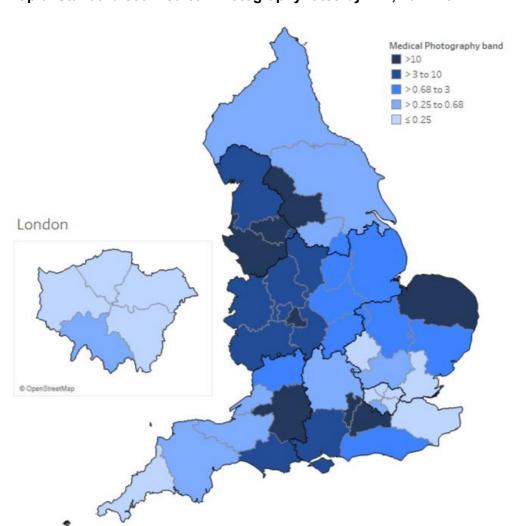
Map 7. Standardised PET Scan rates by ICB, 2024/25


Graph 7. Standardised PET Scan rates by ICB, 2024/25

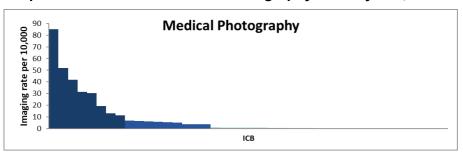

2.2.8 SPECT Scan

SPECT scan showed clusters of high rates in the Midlands, London and South East, but with relatively low rates for many ICBs (Map 8). The biggest volume providers of SPECT were NHS Surrey Heartlands, NHS North Central London ICB and NHS Leicester, Leicestershire and Rutland ICB, all three with rates over double the national rate. The national rate was 9 SPECT scans per 10,000 population but the variance was wide; one standard deviation of the mean extended from 4 to 15 tests per 10,000 population (with 62% of ICBs within this range).

Map 8. Standardised SPECT Scan rates by ICB, 2024/25

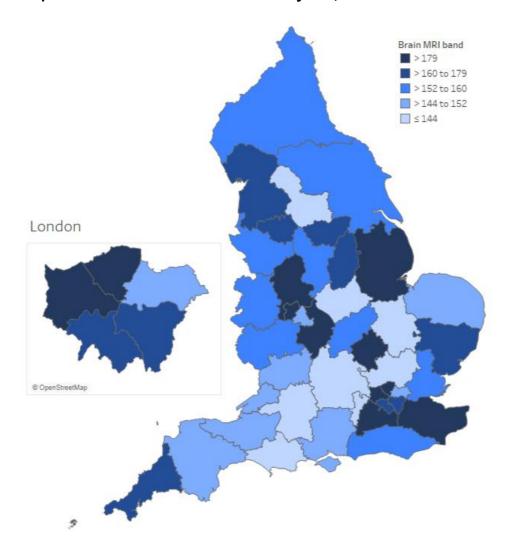


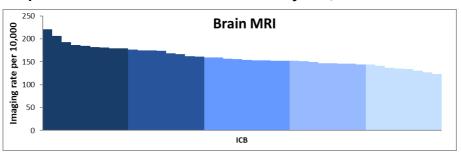
Graph 8. Standardised SPECT Scan rates by ICB, 2024/25


2.2.9 Medical Photography

Medical Photography showed a marked cluster of high rates, particularly in the North West of England and around Surrey, Hampshire and Norfolk and Waveney (Map 9). However, only 11 providers reported a rate of more than a few Medical Photography images in the DID, the biggest being James Paget University Hospitals NHS Foundation Trust, Liverpool University Hospitals NHS Foundation Trust and Northern Care Alliance NHS Foundation Trust. Most ICBs had very little reported Medical Photography (Map 9).

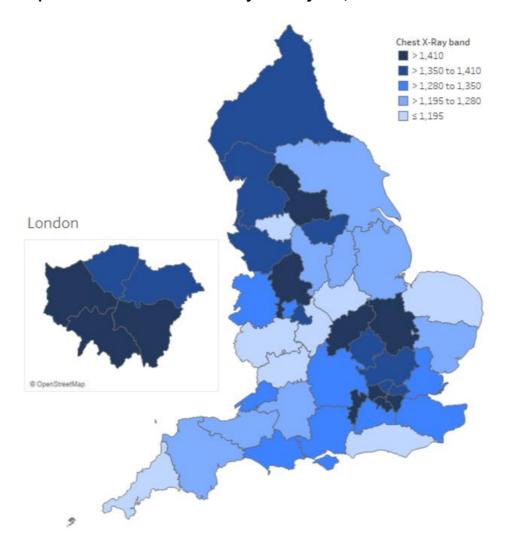
Map 9. Standardised Medical Photography rates by ICB, 2024/25

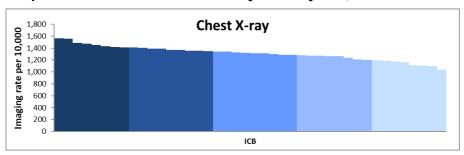

Graph 9. Standardised Medical Photography rates by ICB, 2024/25


2.2.10 Brain MRI

Brain MRI showed relatively little regional pattern (Map 10) but with high rates in parts of London, the South East and Midlands, broadly similar to all MRI (see section 2.2.4). High rates tended to cluster around neighbouring ICBs and many of these areas had at least one high-volume provider, although there were a wide variety of providers of different levels of activity. The national rate was 162 Brain MRIs per 10,000 population.

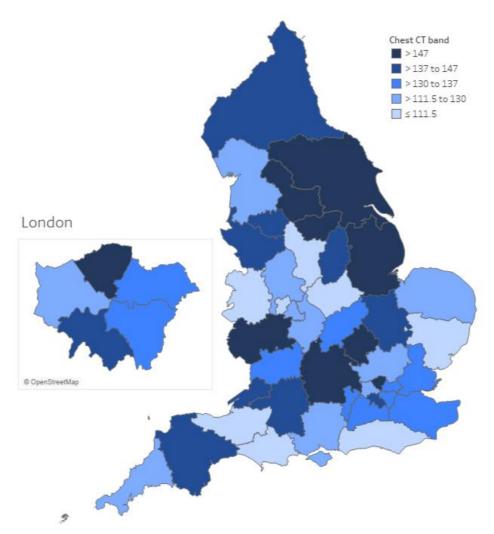
Map 10. Standardised Brain MRI rates by ICB, 2024/25

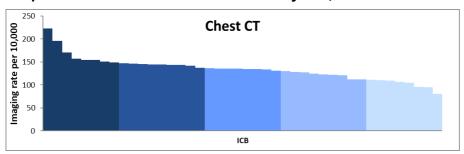

Graph 10. Standardised Brain MRI rates by ICB, 2024/25


2.2.11 Chest X-ray

Chest X-ray showed higher test rates predominantly around London and in parts of the North East and Yorkshire, North West and East of England (Map 11). Only 55% of ICBs had a standardised rate within 10% of their crude rate, indicating that demographics had a large effect on rates. The national rate was 1,316 Chest X-rays per 10,000 ICB population.

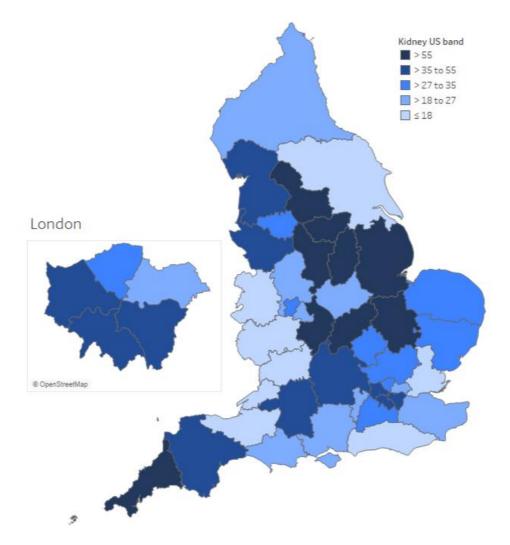
Map 11. Standardised Chest X-ray rates by ICB, 2024/25

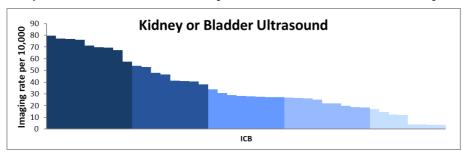

Graph 11. Standardised Chest X-ray rates by ICB, 2024/25


2.2.12 Chest CT

Chest CT showed less variation across ICBs than the other tests for potential early diagnosis of cancer, with higher test rates clustered around the North East and Yorkshire region, with high rates also observed in parts of the South East and South West (Map 12). The national rate was 139 Chest CTs per 10,000 population, and 81% of ICBs were within one standard deviation of the mean, between 109 and 159 tests per 10,000 population.

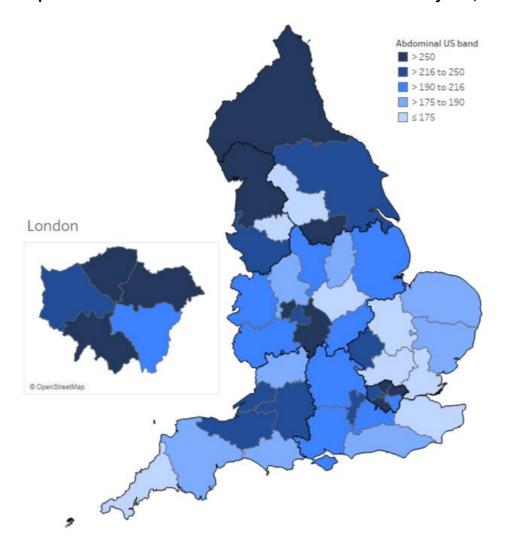
Map 12. Standardised Chest CT rates by ICB, 2024/25

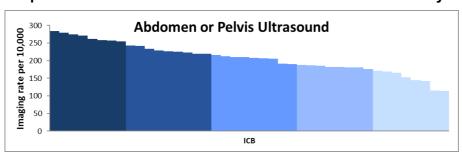

Graph 12. Standardised Chest CT rates by ICB, 2024/25


2.2.13 Kidney & Bladder Ultrasound

There was a wider range of rates of Kidney & Bladder Ultrasound than other Early Diagnosis of Cancer (EDOC) tests, with the highest rates mostly in the Midlands. Both the highest and lowest rates were grouped together in clusters of ICBs (Map 13). The national rate was 36 Kidney & Bladder ultrasounds per 10,000 population.

Map 13. Standardised Kidney & Bladder Ultrasound rates by ICB, 2024/25


Graph 13. Standardised Kidney & Bladder Ultrasound rates by ICB, 2024/25


2.2.14 Abdomen & Pelvis Ultrasound

The highest rates of Abdomen & Pelvis Ultrasound were in the North East, North West and London, with the highest rate being 284 scans per 10,000 ICB population in NHS South Yorkshire ICB. Lower rates were observed in the East of England (Map 14). The national rate was 209 Abdomen & Pelvis ultrasounds per 10,000 population.

Map 14. Standardised Abdomen & Pelvis Ultrasound rates by ICB, 2024/25

Graph 14. Standardised Abdomen & Pelvis Ultrasound rates by ICB, 2024/25

3 Rates Ratios

3.1 Method

Three factors were considered that could have an impact on the rate of diagnostic testing: age (five-year age bands⁷), sex (male and female) and deprivation (quintiles of the Index of Multiple Deprivation). Differences in the distribution of these factors across ICBs might be partially responsible for the differences in crude observed rates between ICBs. Rates ratios were used to demonstrate the impact of each factor on the rate of diagnostic testing, whilst controlling for the others. Significant differences between the rates ratios for each factor suggest that it was worth standardising for these.

National rates of diagnostic testing activity were calculated by two of the three factors at a time, in order to estimate expected values for the third factor (IMD, Sex or Age). For example, if rates ratios were being calculated for IMD, rates were standardised by Sex and Age. This resulted in three sets of standardised rates per 10,000 population. Rates ratios were calculated using the following formula:

Ratio =
$$\frac{r^2}{r^1}$$

Where

 r_1 = standardised rate for the base category (e.g. female) r_2 = standardised rate for the comparison category (e.g. male) expressed per unit of population.

So for example the rates ratio for male X-rays was calculated by:

	Standardised rate per 10,000	Rates Ratio
Female	4,027	1.00
Male	3,202	0.80

Note: The base level will always be set to 1 with other levels given as a ratio of this.

In this example, the rate of X-rays was 20% lower in males than females, even after standardising for the effect of age and IMD.

Further statistical analysis of the rates ratios was conducted using Pearson's Chi Square test of significance.

⁷ Although five-year age bands were used for analysis and standardisation, Rates ratios are given for broader age bands.

3.2 Results

3.2.1 Sex

There was variation in the rates of imaging tests by gender, see Tables 1 and 2. As would be expected, the rate of ultrasound tests in men was around a third of that in women (rates ratio = 0.36). Of these rates ratios, X-ray, Ultrasound, MRI, Brain MRI and Abdomen or Pelvis Ultrasound were found to be significant*.

Table 1. Sex rates ratios by modality, 2024/25

	X-ray	Ultrasound	CT Scan	MRI	Fluoro- scopy	Nuclear Medicine	PET Scan	SPECT Scan	Medical Photography
Female	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Male	0.80***	0.36***	0.97	0.81***	1.08	0.90	1.16	0.95	0.91

Table 2. Sex rates ratios by Early Diagnosis of Cancer, 2024/25

	Brain MRI Chest X-ray		Chest CT	Kidney or Bladder Ultrasound	Abdomen or Pelvis Ultrasound	
Female	1.00	1.00	1.00	1.00	1.00	
Male	0.79*	1.07	1.13	0.93	0.71***	

3.2.2 Deprivation

There appears to be a consistent tendency for areas of highest deprivation to have most imaging tests, see Tables 3 and 4. Deprivation had a significant impact at all levels for X-ray, Ultrasound, CT and Chest X-ray. The three least deprived quintiles were significantly different from the most deprived for Chest CT and Abdomen or Pelvis Ultrasound, the two least deprived quintiles were significantly different from the most deprived for MRI and the least deprived quintile was significantly different for Fluoroscopy.

Table 3. Deprivation rates ratios by modality, 2024/25

	X-ray	Ultrasound	CT Scan	MRI	Fluoro- scopy	Nuclear Medicine	PET Scan	SPECT Scan	Medical Photography
1 Most deprived	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2 More deprived	0.91***	0.93*	0.86***	0.94	0.91	0.98	0.92	0.89	0.63
3 Mid quintile	0.85***	0.89***	0.77***	0.91	0.87	0.94	0.90	0.82	0.61
4 Less deprived	0.81***	0.88***	0.72***	0.90*	0.82	0.92	0.88	0.80	0.51
5 Least deprived	0.76***	0.84***	0.66***	0.87**	0.76*	0.88	0.83	0.83	0.50

^{*} significant at p < 0.05

^{**} significant at p < 0.01

^{***} significant at p < 0.001

Table 4. Deprivation rates ratios by Early Diagnosis of Cancer, 2024/25

	Brain MRI	Chest X- ray	Chest CT	Kidney or Bladder Ultrasound	Abdomen or Pelvis Ultrasound
1 Most deprived	1.00	1.00	1.00	1.00	1.00
2 More deprived	0.94	0.85***	0.82	0.95	0.91
3 Mid quintile	0.89	0.75***	0.72**	0.83	0.81*
4 Less deprived	0.87	0.69***	0.68***	0.85	0.78**
5 Least deprived	0.83	0.63***	0.61***	0.78	0.72***

3.2.3 Age

Age has the largest impact on the rates of imaging tests, with the age band of 75 or older showing much higher rates ratios across all modalities and early diagnosis of cancer tests compared with age under 45. All modalities and EDOCs have a significant result for the 65+ age bands and most other age bands were also significantly higher than the 0 to 45 group except for Ultrasound and the modalities with small numbers (SPECT Scan and Medical Photography). Full breakdowns are given in Tables 5 and 6.

Table 5. Age band rates ratios by modality, 2024/25

	X-ray	Ultrasound	CT Scan	MRI		Nuclear Medicine	PET Scan	SPECT Scan	Medical Photography
0 - <45	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
45 - <55	1.71***	1.06	2.81***	2.19***	2.56***	2.70***	4.88***	2.33	1.27
55 - <65	2.46***	1.10**	4.65***	2.77***	4.36***	4.63***	10.96***	4.63**	2.15
65 - <75	3.36***	1.19***	7.50***	3.19***	6.42***	7.49***	19.88***	8.60***	3.74**
75+	5.11***	1.34***	12.64***	2.89***	8.22***	8.61***	19.23***	11.09***	8.25***

Table 6. Age band rates ratios by Early Diagnosis of Cancer, 2024/25

	Brain MRI	Chest X-ray	Chest CT	Kidney or Bladder Ultrasound	Abdomen or Pelvis Ultrasound
0 - <45	1.00	1.00	1.00	1.00	1.00
45 - <55	1.90***	2.10***	4.59***	1.38	1.77***
55 - <65	2.47***	3.21***	9.66***	1.77*	2.08***
65 - <75	3.10***	4.91***	17.44***	2.56***	2.22***
75+	3.69***	8.79***	22.39***	3.94***	2.18***

4 Annex

4.1 Annex A - Data quality and the impact of missing data

In 2024/25, the ICB of patients in the DID was derived from either their GP Practice code or, where this was missing, the Lower Super Output Area (LSOA) of their postcode. Although resident (LSOA based) ICB may not be the same as responsible (GP Practice based) ICB, with nationally up to 3% of patients living in a different ICB from their GP Practice, this method improves the coverage of ICB activity.

Across all modalities, 95.5% imaging tests (47.8 million) had an English ICB based on GP Practice in 2024/25, compared with 93.6% in 2023/24. A further 3.9% (1.9 million) had an English ICB derived from LSOA, 0.3% (155,000) had a non-English or other valid GP Practice (e.g. prisons and Ministry of Defence practices) and 0.3% (162,000) were unknown or unidentified.

Providers with more than 10% and 10,000 imaging tests with no GP Practice are listed in Table A.1. Most of these were allocated to a ICB using LSOA. Providers with more than 10,000 imaging tests with no GP Practice *or* LSOA from which to allocate ICB are listed at the bottom of Table A.1. Guy's and St Thomas' NHS Foundation Trust (RJ1) exceeds 5% and 40,000 imaging tests with no basis for deriving ICB, whilst King's College Hospital NHS Foundation Trust (RJZ) exceeds 10,000 imaging tests with no basis for deriving ICB. Both of these mainly impact NHS South East London ICB (QKK). Nationally, 317,000 (0.6%) imaging tests were omitted from the ICB tables because no English ICB could be identified.

Table A.1. Providers with more than 10% and 10,000 imaging tests with no GP Practice in the Diagnostic Imaging Dataset, 2024/25

Provid	der code and name	Activity wi		Of which, activity with no LSOA		
		No. tests	% tests	No. tests	% tests	
RM3	Northern Care Alliance NHS Foundation Trust	388,800	52%	500	0.1%	
RVV	East Kent Hospitals University NHS Foundation Trust	134,500	22%	1,000	0.2%	
NT9	Alliance Medical	114,200	44%	200	0.1%	
RTD	The Newcastle Upon Tyne Hospitals NHS Foundation Trust	62,900	12%	700	0.1%	
RN5	Hampshire Hospitals NHS Foundation Trust	50,400	15%	900	0.3%	
RTP	Surrey and Sussex Healthcare NHS Trust	30,300	36%	3,700	4.4%	
RGP	James Paget University Hospitals NHS Foundation Trust	24,500	11%	40	0.0%	
NT3	Spire Healthcare	17,200	10%	-	0.0%	
NTP	Practice Plus Group Holdings	13,800	11%	200	0.2%	
RJ1	Guy's and St Thomas' NHS Foundation Trust	59,100	8%	40,700	5.5%	
RJZ	King's College Hospital NHS Foundation Trust	24,900	4%	10,200	1.5%	

Providers with more than 5% and 5,000 imaging tests with no age or sex or LSOA (to impute deprivation score) are listed in Table A.2. Nationally, 224,000 (0.4%) imaging tests with a valid ICB were omitted from standardised rates because no deprivation score could be imputed from LSOA, a further 86,000 (0.2%) had gender missing and a further 180 (0.0%) had no date of birth submitted (to impute age band).

Table A.2. Providers with more than 5% and 5,000 imaging tests with no Age or Sex or LSOA in the Diagnostic Imaging Dataset, 2024/25

Provi	der code and name	Total no. tests	Of which age, sex or LSOA missing	% missing	Most common missing
NYR RJ1 RQ3	Healthshare Diagnostics Guy's and St Thomas' NHS Foundation Trust Birmingham Women's and Children's NHS Foundation Trust	238,000 756,000 168,000	71,000 58,000 35,000	29.8% 7.7% 20.7%	LSOA
RTP RBL	Surrey and Sussex Healthcare NHS Trust Wirral University Teaching Hospital NHS Foundation Trust	85,000 384,000	32,000 30,000	37.5% 7.8%	Sex LSOA

The ICBs most affected by the omission of LSOA (to derive ICB where no GP practice was given or to impute deprivation score) or sex or age are listed in Table A.3. The biggest shortfall is for NHS South East London ICB (QKK), which has standardised rates 3.3% lower than expected mainly because of incomplete data fields for Guy's and St Thomas' NHS Foundation Trust (RJ1).

Table A.3. ICBs with more than 1% and 10,000 imaging tests with no Age or Sex or LSOA in the Diagnostic Imaging Dataset, 2024/25

ICB code and name		Total no. tests	Of which age, sex or LSOA missing	% missing	Most common missing
QKK	NHS South East London ICB	1,677,000	56,000	3.3%	LSOA
QMF	NHS North East London ICB	1,944,000	45,700	2.4%	LSOA
QYG	NHS Cheshire and Merseyside ICB	2,453,000	40,700	1.7%	LSOA
QRV	NHS North West London ICB	1,997,000	40,100	2.0%	LSOA
QHL	NHS Birmingham and Solihull ICB	1,159,000	30,800	2.7%	Sex
QNX	NHS Sussex ICB	1,332,000	20,100	1.5%	Sex
QMM	NHS Norfolk and Waveney ICB	892,000	18,500	2.1%	LSOA
QXU	NHS Surrey Heartlands ICB	864,000	18,300	2.1%	Sex
QWE	NHS South West London ICB	1,354,000	14,200	1.0%	LSOA
QU9	NHS Buckinghamshire, Oxfordshire and	1,317,000	13,400	1.0%	LSOA
	Berkshire West ICB				
QNC	NHS Staffordshire and Stoke-on-Trent ICB	1,011,000	10,700	1.1%	LSOA
QSL	NHS Somerset ICB	517,000	10,100	2.0%	Sex

In addition to the list above, some ICBs have reduced rates because of shortfalls in the data submissions of their providers. Details of known data coverage issues by provider are listed in Section 4.3 of the DID Technical Report 2024-25. The ICBs most affected by these shortfalls are listed in Table A.4. The biggest shortfalls are:

- NHS North East and North Cumbria ICB (QHM) 317,000 (11%) missing due to missing data for North Cumbria Integrated Care NHS Foundation Trust (RNN),
- NHS Greater Manchester ICB (QOP) 295,000 (11%) missing due to missing data for Manchester University NHS Foundation Trust (R0A),
- NHS Sussex ICB (QNX) 125,000 (9%) and NHS Surrey Heartlands ICB (QXU) 121,000 (12%) missing due to missing data for Surrey and Sussex Healthcare NHS Trust (RTP),

 NHS Buckinghamshire, Oxfordshire and Berkshire West ICB (QU9) 72,000 (5%) missing due to submission shortfalls by Buckinghamshire Healthcare NHS Trust (RXQ).

Table A.4. ICBs with more than 5% and 5,000 estimated missing imaging tests in the Diagnostic Imaging Dataset, 2024/25

ICB code and name		Total no. tests	Records missing	% missing
QHM	NHS North East and North Cumbria ICB	2,681,000	317,000	11%
QOP	NHS Greater Manchester ICB	2,443,000	295,000	11%
QNX	NHS Sussex ICB	1,332,000	125,000	9%
QXU	NHS Surrey Heartlands ICB	864,000	121,000	12%
QU9	NHS Buckinghamshire, Oxfordshire and Berkshire West ICB	1,317,000	72,000	5%

Overall, the impact of missing data outlined above is slightly improved on 2023/24. Outliers at the higher end of the distribution may be impacted by providers that tend to report multiple scans individually rather than as a group.

4.2 Annex B - ICB Standardised Imaging Rates per 10,000, 2024/25

See separate excel file (Annex 4a – DID Standardised ICB Rates 2024-25).

4.3 Contact Us

4.3.1 Feedback

We welcome feedback on this publication. Please contact us at england.did@nhs.net

4.3.2 Websites

Further information about the DID dataset can be found on NHS Digital DID website.

The DID Tables and Reports can be found on the NHS England DID website (http://www.england.nhs.uk/statistics/diagnostic-imaging-dataset/).

4.3.3 Additional Information

For press enquiries contact the NHS England Media team on 0113 825 0958 or 0113 825 0959. Email enquiries should be directed to nhsengland.media@nhs.net

The NHS England Analyst responsible for producing these data is:

Sheila Dixon Operational Insights NHS England

Email: england.did@nhs.net